大学三角函数公式
大学三角函数公式
大学三角函数公式包括以下几类:
倍角公式
$\sin 2A = 2\sin A \cos A$
$\cos 2A = \cos^2 A - \sin^2 A = 1 - 2\sin^2 A = 2\cos^2 A - 1$
$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$
降幂公式
$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2} = \frac{\text{versin} 2\alpha}{2}$
$2\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2} = \frac{\text{covers} 2\alpha}{2}$
$\tan^2 \alpha = \frac{1 - \cos 2\alpha}{1 + \cos 2\alpha}$
推导公式
$1 + \tan \alpha + \cot \alpha = \frac{2}{\sin 2\alpha}$
$\tan \alpha - \cot \alpha = -\frac{2}{\cot 2\alpha}$
$1 + \cos 2\alpha = 2\cos^2 \alpha$
$4 - \cos 2\alpha = 2\sin^2 \alpha$
$1 + \sin \alpha = \left( \frac{\sin \alpha}{2} + \frac{\cos \alpha}{2} \right)^2 = 2\sin \alpha (1 - \sin 2\alpha) + (1 - 2\sin 2\alpha)\sin \alpha$
诱导公式
$\sin(\pi + \alpha) = -\sin \alpha$
$\cos(\pi + \alpha) = -\cos \alpha$
$\tan(\pi + \alpha) = \tan \alpha$
$\cot(\pi + \alpha) = \cot \alpha$
$\sin(-\alpha) = -\sin \alpha$
$\cos(-\alpha) = \cos \alpha$
$\tan(-\alpha) = -\tan \alpha$
$\cot(-\alpha) = -\cot \alpha$
$\sin(2\pi - \alpha) = -\sin \alpha$
$\cos(2\pi - \alpha) = \cos \alpha$
$\tan(2\pi - \alpha) = -\tan \alpha$
$\cot(2\pi - \alpha) = -\cot \alpha$
半角公式
$\tan\left(\frac{A}{2}\right) = \frac{1 - \cos A}{\sin A} = \frac{\sin A}{1 + \cos A}$
万能公式
$\sin \alpha = \frac{2\tan\left(\frac{\alpha}{2}\right)}{1 + \tan^2\left(\frac{\alpha}{2}\right)}$
$\cos \alpha = \frac{1 - \tan^2\left(\frac{\alpha}{2}\right)}{1 + \tan^2\left(\frac{\alpha}{2}\right)}$
$\tan \alpha = \frac{2\tan\left(\frac{\alpha}{2}\right)}{1 - \tan^2\left(\frac{\alpha}{2}\right)}$
和差角公式
$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$
$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$
$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$
$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$
$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$
这些公式涵盖了大学阶段常用的三角函数及其变换,掌握这些公式对于解决三角函数相关的问题非常重要。建议在实际应用中,根据具体问题选择